Metamath Proof Explorer


Theorem nfrald

Description: Deduction version of nfral . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfraldw when possible. (Contributed by NM, 15-Feb-2013) (Revised by Mario Carneiro, 7-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfrald.1 𝑦 𝜑
nfrald.2 ( 𝜑 𝑥 𝐴 )
nfrald.3 ( 𝜑 → Ⅎ 𝑥 𝜓 )
Assertion nfrald ( 𝜑 → Ⅎ 𝑥𝑦𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 nfrald.1 𝑦 𝜑
2 nfrald.2 ( 𝜑 𝑥 𝐴 )
3 nfrald.3 ( 𝜑 → Ⅎ 𝑥 𝜓 )
4 df-ral ( ∀ 𝑦𝐴 𝜓 ↔ ∀ 𝑦 ( 𝑦𝐴𝜓 ) )
5 nfcvf ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑥 𝑦 )
6 5 adantl ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → 𝑥 𝑦 )
7 2 adantr ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → 𝑥 𝐴 )
8 6 7 nfeld ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑦𝐴 )
9 3 adantr ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜓 )
10 8 9 nfimd ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 ( 𝑦𝐴𝜓 ) )
11 1 10 nfald2 ( 𝜑 → Ⅎ 𝑥𝑦 ( 𝑦𝐴𝜓 ) )
12 4 11 nfxfrd ( 𝜑 → Ⅎ 𝑥𝑦𝐴 𝜓 )