Step |
Hyp |
Ref |
Expression |
1 |
|
nfrald.1 |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
nfrald.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
3 |
|
nfrald.3 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) |
4 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝜓 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜓 ) ) |
5 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) |
6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑦 ) |
7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝐴 ) |
8 |
6 7
|
nfeld |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
9 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜓 ) |
10 |
8 9
|
nfimd |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 → 𝜓 ) ) |
11 |
1 10
|
nfald2 |
⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜓 ) ) |
12 |
4 11
|
nfxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐴 𝜓 ) |