Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
nfraldw
Metamath Proof Explorer
Description: Deduction version of nfralw . Version of nfrald with a disjoint
variable condition, which does not require ax-13 . (Contributed by NM , 15-Feb-2013) (Revised by Gino Giotto , 24-Sep-2024)
Ref
Expression
Hypotheses
nfraldw.1
⊢ Ⅎ 𝑦 𝜑
nfraldw.2
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 )
nfraldw.3
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 )
Assertion
nfraldw
⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐴 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
nfraldw.1
⊢ Ⅎ 𝑦 𝜑
2
nfraldw.2
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 )
3
nfraldw.3
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 )
4
df-ral
⊢ ( ∀ 𝑦 ∈ 𝐴 𝜓 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜓 ) )
5
2
nfcrd
⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝐴 )
6
5 3
nfimd
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 → 𝜓 ) )
7
1 6
nfald
⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜓 ) )
8
4 7
nfxfrd
⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐴 𝜓 )