Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
nfraldwOLD
Metamath Proof Explorer
Description: Obsolete version of nfraldw as of 24-Sep-2024. (Contributed by NM , 15-Feb-2013) (Revised by Gino Giotto , 10-Jan-2024)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Hypotheses
nfraldw.1
⊢ Ⅎ 𝑦 𝜑
nfraldw.2
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 )
nfraldw.3
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 )
Assertion
nfraldwOLD
⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐴 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
nfraldw.1
⊢ Ⅎ 𝑦 𝜑
2
nfraldw.2
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 )
3
nfraldw.3
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 )
4
df-ral
⊢ ( ∀ 𝑦 ∈ 𝐴 𝜓 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜓 ) )
5
nfcvd
⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 )
6
5 2
nfeld
⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝐴 )
7
6 3
nfimd
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 → 𝜓 ) )
8
1 7
nfald
⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜓 ) )
9
4 8
nfxfrd
⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐴 𝜓 )