Metamath Proof Explorer


Theorem nfraldwOLD

Description: Obsolete version of nfraldw as of 24-Sep-2024. (Contributed by NM, 15-Feb-2013) (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses nfraldw.1 𝑦 𝜑
nfraldw.2 ( 𝜑 𝑥 𝐴 )
nfraldw.3 ( 𝜑 → Ⅎ 𝑥 𝜓 )
Assertion nfraldwOLD ( 𝜑 → Ⅎ 𝑥𝑦𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 nfraldw.1 𝑦 𝜑
2 nfraldw.2 ( 𝜑 𝑥 𝐴 )
3 nfraldw.3 ( 𝜑 → Ⅎ 𝑥 𝜓 )
4 df-ral ( ∀ 𝑦𝐴 𝜓 ↔ ∀ 𝑦 ( 𝑦𝐴𝜓 ) )
5 nfcvd ( 𝜑 𝑥 𝑦 )
6 5 2 nfeld ( 𝜑 → Ⅎ 𝑥 𝑦𝐴 )
7 6 3 nfimd ( 𝜑 → Ⅎ 𝑥 ( 𝑦𝐴𝜓 ) )
8 1 7 nfald ( 𝜑 → Ⅎ 𝑥𝑦 ( 𝑦𝐴𝜓 ) )
9 4 8 nfxfrd ( 𝜑 → Ⅎ 𝑥𝑦𝐴 𝜓 )