Metamath Proof Explorer
Description: The setvar x is not free in E. x e. A ph . (Contributed by NM, 19-Mar-1997) (Revised by Mario Carneiro, 7-Oct-2016)
|
|
Ref |
Expression |
|
Assertion |
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐴 𝜑 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 2 |
|
nfe1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) |
| 3 |
1 2
|
nfxfr |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐴 𝜑 |