Metamath Proof Explorer
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003) (Revised by David Abernethy, 19-Jun-2012)
|
|
Ref |
Expression |
|
Hypotheses |
nfres.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
nfres.2 |
⊢ Ⅎ 𝑥 𝐵 |
|
Assertion |
nfres |
⊢ Ⅎ 𝑥 ( 𝐴 ↾ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfres.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
nfres.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
df-res |
⊢ ( 𝐴 ↾ 𝐵 ) = ( 𝐴 ∩ ( 𝐵 × V ) ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 V |
5 |
2 4
|
nfxp |
⊢ Ⅎ 𝑥 ( 𝐵 × V ) |
6 |
1 5
|
nfin |
⊢ Ⅎ 𝑥 ( 𝐴 ∩ ( 𝐵 × V ) ) |
7 |
3 6
|
nfcxfr |
⊢ Ⅎ 𝑥 ( 𝐴 ↾ 𝐵 ) |