Metamath Proof Explorer


Theorem nfreuw

Description: Bound-variable hypothesis builder for restricted unique existence. Version of nfreu with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 30-Oct-2010) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfreuw.1 𝑥 𝐴
nfreuw.2 𝑥 𝜑
Assertion nfreuw 𝑥 ∃! 𝑦𝐴 𝜑

Proof

Step Hyp Ref Expression
1 nfreuw.1 𝑥 𝐴
2 nfreuw.2 𝑥 𝜑
3 df-reu ( ∃! 𝑦𝐴 𝜑 ↔ ∃! 𝑦 ( 𝑦𝐴𝜑 ) )
4 nftru 𝑦
5 nfcvd ( ⊤ → 𝑥 𝑦 )
6 1 a1i ( ⊤ → 𝑥 𝐴 )
7 5 6 nfeld ( ⊤ → Ⅎ 𝑥 𝑦𝐴 )
8 2 a1i ( ⊤ → Ⅎ 𝑥 𝜑 )
9 7 8 nfand ( ⊤ → Ⅎ 𝑥 ( 𝑦𝐴𝜑 ) )
10 4 9 nfeudw ( ⊤ → Ⅎ 𝑥 ∃! 𝑦 ( 𝑦𝐴𝜑 ) )
11 3 10 nfxfrd ( ⊤ → Ⅎ 𝑥 ∃! 𝑦𝐴 𝜑 )
12 11 mptru 𝑥 ∃! 𝑦𝐴 𝜑