Metamath Proof Explorer
Description: Consequence of the definition of not-free. (Contributed by Wolf Lammen, 16-Sep-2021)
|
|
Ref |
Expression |
|
Hypothesis |
nfri.1 |
⊢ Ⅎ 𝑥 𝜑 |
|
Assertion |
nfri |
⊢ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfri.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
df-nf |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ) |
3 |
1 2
|
mpbi |
⊢ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) |