Metamath Proof Explorer


Theorem nfriota

Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses nfriota.1 𝑥 𝜑
nfriota.2 𝑥 𝐴
Assertion nfriota 𝑥 ( 𝑦𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 nfriota.1 𝑥 𝜑
2 nfriota.2 𝑥 𝐴
3 nftru 𝑦
4 1 a1i ( ⊤ → Ⅎ 𝑥 𝜑 )
5 2 a1i ( ⊤ → 𝑥 𝐴 )
6 3 4 5 nfriotadw ( ⊤ → 𝑥 ( 𝑦𝐴 𝜑 ) )
7 6 mptru 𝑥 ( 𝑦𝐴 𝜑 )