Metamath Proof Explorer


Theorem nfriotad

Description: Deduction version of nfriota . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfriotadw when possible. (Contributed by NM, 18-Feb-2013) (Revised by Mario Carneiro, 15-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfriotad.1 𝑦 𝜑
nfriotad.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
nfriotad.3 ( 𝜑 𝑥 𝐴 )
Assertion nfriotad ( 𝜑 𝑥 ( 𝑦𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 nfriotad.1 𝑦 𝜑
2 nfriotad.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
3 nfriotad.3 ( 𝜑 𝑥 𝐴 )
4 df-riota ( 𝑦𝐴 𝜓 ) = ( ℩ 𝑦 ( 𝑦𝐴𝜓 ) )
5 nfnae 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦
6 1 5 nfan 𝑦 ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 )
7 nfcvf ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑥 𝑦 )
8 7 adantl ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → 𝑥 𝑦 )
9 3 adantr ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → 𝑥 𝐴 )
10 8 9 nfeld ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑦𝐴 )
11 2 adantr ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜓 )
12 10 11 nfand ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 ( 𝑦𝐴𝜓 ) )
13 6 12 nfiotad ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → 𝑥 ( ℩ 𝑦 ( 𝑦𝐴𝜓 ) ) )
14 13 ex ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑥 ( ℩ 𝑦 ( 𝑦𝐴𝜓 ) ) ) )
15 nfiota1 𝑦 ( ℩ 𝑦 ( 𝑦𝐴𝜓 ) )
16 eqidd ( ∀ 𝑥 𝑥 = 𝑦 → ( ℩ 𝑦 ( 𝑦𝐴𝜓 ) ) = ( ℩ 𝑦 ( 𝑦𝐴𝜓 ) ) )
17 16 drnfc1 ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 ( ℩ 𝑦 ( 𝑦𝐴𝜓 ) ) ↔ 𝑦 ( ℩ 𝑦 ( 𝑦𝐴𝜓 ) ) ) )
18 15 17 mpbiri ( ∀ 𝑥 𝑥 = 𝑦 𝑥 ( ℩ 𝑦 ( 𝑦𝐴𝜓 ) ) )
19 14 18 pm2.61d2 ( 𝜑 𝑥 ( ℩ 𝑦 ( 𝑦𝐴𝜓 ) ) )
20 4 19 nfcxfrd ( 𝜑 𝑥 ( 𝑦𝐴 𝜓 ) )