| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfriotadw.1 |
⊢ Ⅎ 𝑦 𝜑 |
| 2 |
|
nfriotadw.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) |
| 3 |
|
nfriotadw.3 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
| 4 |
|
df-riota |
⊢ ( ℩ 𝑦 ∈ 𝐴 𝜓 ) = ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
| 5 |
|
nfnaew |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 6 |
1 5
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 7 |
|
nfcvd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑦 ) |
| 9 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝐴 ) |
| 10 |
8 9
|
nfeld |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
| 11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜓 ) |
| 12 |
10 11
|
nfand |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
| 13 |
6 12
|
nfiotadw |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 14 |
13
|
ex |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) ) |
| 15 |
|
nfiota1 |
⊢ Ⅎ 𝑦 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
| 16 |
|
biidd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) ) |
| 17 |
16
|
drnf1v |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( Ⅎ 𝑥 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ Ⅎ 𝑦 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) ) |
| 18 |
17
|
albidv |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑤 Ⅎ 𝑥 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑤 Ⅎ 𝑦 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) ) |
| 19 |
|
df-nfc |
⊢ ( Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑤 Ⅎ 𝑥 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 20 |
|
df-nfc |
⊢ ( Ⅎ 𝑦 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑤 Ⅎ 𝑦 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 21 |
18 19 20
|
3bitr4g |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ Ⅎ 𝑦 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) ) |
| 22 |
15 21
|
mpbiri |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 23 |
14 22
|
pm2.61d2 |
⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 24 |
4 23
|
nfcxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑦 ∈ 𝐴 𝜓 ) ) |