Step |
Hyp |
Ref |
Expression |
1 |
|
nfriotadw.1 |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
nfriotadw.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) |
3 |
|
nfriotadw.3 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
4 |
|
df-riota |
⊢ ( ℩ 𝑦 ∈ 𝐴 𝜓 ) = ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
5 |
|
nfnaew |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 |
6 |
1 5
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
7 |
|
nfcvd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑦 ) |
9 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝐴 ) |
10 |
8 9
|
nfeld |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜓 ) |
12 |
10 11
|
nfand |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
13 |
6 12
|
nfiotadw |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
14 |
13
|
ex |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) ) |
15 |
|
nfiota1 |
⊢ Ⅎ 𝑦 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
16 |
|
biidd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) ) |
17 |
16
|
drnf1v |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( Ⅎ 𝑥 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ Ⅎ 𝑦 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) ) |
18 |
17
|
albidv |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑤 Ⅎ 𝑥 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑤 Ⅎ 𝑦 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) ) |
19 |
|
df-nfc |
⊢ ( Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑤 Ⅎ 𝑥 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
20 |
|
df-nfc |
⊢ ( Ⅎ 𝑦 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑤 Ⅎ 𝑦 𝑤 ∈ ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
21 |
18 19 20
|
3bitr4g |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ Ⅎ 𝑦 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) ) |
22 |
15 21
|
mpbiri |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
23 |
14 22
|
pm2.61d2 |
⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
24 |
4 23
|
nfcxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑦 ∈ 𝐴 𝜓 ) ) |