Metamath Proof Explorer


Theorem nfrmo

Description: Bound-variable hypothesis builder for restricted uniqueness. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfrmow when possible. (Contributed by NM, 16-Jun-2017) (New usage is discouraged.)

Ref Expression
Hypotheses nfreu.1 𝑥 𝐴
nfreu.2 𝑥 𝜑
Assertion nfrmo 𝑥 ∃* 𝑦𝐴 𝜑

Proof

Step Hyp Ref Expression
1 nfreu.1 𝑥 𝐴
2 nfreu.2 𝑥 𝜑
3 df-rmo ( ∃* 𝑦𝐴 𝜑 ↔ ∃* 𝑦 ( 𝑦𝐴𝜑 ) )
4 nftru 𝑦
5 nfcvf ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑥 𝑦 )
6 1 a1i ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑥 𝐴 )
7 5 6 nfeld ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦𝐴 )
8 2 a1i ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜑 )
9 7 8 nfand ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ( 𝑦𝐴𝜑 ) )
10 9 adantl ( ( ⊤ ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 ( 𝑦𝐴𝜑 ) )
11 4 10 nfmod2 ( ⊤ → Ⅎ 𝑥 ∃* 𝑦 ( 𝑦𝐴𝜑 ) )
12 11 mptru 𝑥 ∃* 𝑦 ( 𝑦𝐴𝜑 )
13 3 12 nfxfr 𝑥 ∃* 𝑦𝐴 𝜑