Metamath Proof Explorer


Theorem nfrmo1

Description: The setvar x is not free in E* x e. A ph . (Contributed by NM, 16-Jun-2017)

Ref Expression
Assertion nfrmo1 𝑥 ∃* 𝑥𝐴 𝜑

Proof

Step Hyp Ref Expression
1 df-rmo ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥𝐴𝜑 ) )
2 nfmo1 𝑥 ∃* 𝑥 ( 𝑥𝐴𝜑 )
3 1 2 nfxfr 𝑥 ∃* 𝑥𝐴 𝜑