Metamath Proof Explorer


Theorem nfrmod

Description: Deduction version of nfrmo . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 17-Jun-2017) (New usage is discouraged.)

Ref Expression
Hypotheses nfreud.1 𝑦 𝜑
nfreud.2 ( 𝜑 𝑥 𝐴 )
nfreud.3 ( 𝜑 → Ⅎ 𝑥 𝜓 )
Assertion nfrmod ( 𝜑 → Ⅎ 𝑥 ∃* 𝑦𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 nfreud.1 𝑦 𝜑
2 nfreud.2 ( 𝜑 𝑥 𝐴 )
3 nfreud.3 ( 𝜑 → Ⅎ 𝑥 𝜓 )
4 df-rmo ( ∃* 𝑦𝐴 𝜓 ↔ ∃* 𝑦 ( 𝑦𝐴𝜓 ) )
5 nfcvf ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑥 𝑦 )
6 5 adantl ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → 𝑥 𝑦 )
7 2 adantr ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → 𝑥 𝐴 )
8 6 7 nfeld ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑦𝐴 )
9 3 adantr ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜓 )
10 8 9 nfand ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 ( 𝑦𝐴𝜓 ) )
11 1 10 nfmod2 ( 𝜑 → Ⅎ 𝑥 ∃* 𝑦 ( 𝑦𝐴𝜓 ) )
12 4 11 nfxfrd ( 𝜑 → Ⅎ 𝑥 ∃* 𝑦𝐴 𝜓 )