Metamath Proof Explorer


Theorem nfrmow

Description: Bound-variable hypothesis builder for restricted uniqueness. Version of nfrmo with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 16-Jun-2017) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfreuw.1 𝑥 𝐴
nfreuw.2 𝑥 𝜑
Assertion nfrmow 𝑥 ∃* 𝑦𝐴 𝜑

Proof

Step Hyp Ref Expression
1 nfreuw.1 𝑥 𝐴
2 nfreuw.2 𝑥 𝜑
3 df-rmo ( ∃* 𝑦𝐴 𝜑 ↔ ∃* 𝑦 ( 𝑦𝐴𝜑 ) )
4 nftru 𝑦
5 nfcvd ( ⊤ → 𝑥 𝑦 )
6 1 a1i ( ⊤ → 𝑥 𝐴 )
7 5 6 nfeld ( ⊤ → Ⅎ 𝑥 𝑦𝐴 )
8 2 a1i ( ⊤ → Ⅎ 𝑥 𝜑 )
9 7 8 nfand ( ⊤ → Ⅎ 𝑥 ( 𝑦𝐴𝜑 ) )
10 4 9 nfmodv ( ⊤ → Ⅎ 𝑥 ∃* 𝑦 ( 𝑦𝐴𝜑 ) )
11 10 mptru 𝑥 ∃* 𝑦 ( 𝑦𝐴𝜑 )
12 3 11 nfxfr 𝑥 ∃* 𝑦𝐴 𝜑