Metamath Proof Explorer


Theorem nfrmow

Description: Bound-variable hypothesis builder for restricted uniqueness. Version of nfrmo with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 16-Jun-2017) (Revised by Gino Giotto, 10-Jan-2024) Avoid ax-9 , ax-ext . (Revised by Wolf Lammen, 21-Nov-2024)

Ref Expression
Hypotheses nfreuw.1 𝑥 𝐴
nfreuw.2 𝑥 𝜑
Assertion nfrmow 𝑥 ∃* 𝑦𝐴 𝜑

Proof

Step Hyp Ref Expression
1 nfreuw.1 𝑥 𝐴
2 nfreuw.2 𝑥 𝜑
3 df-rmo ( ∃* 𝑦𝐴 𝜑 ↔ ∃* 𝑦 ( 𝑦𝐴𝜑 ) )
4 1 nfcri 𝑥 𝑦𝐴
5 4 2 nfan 𝑥 ( 𝑦𝐴𝜑 )
6 5 nfmov 𝑥 ∃* 𝑦 ( 𝑦𝐴𝜑 )
7 3 6 nfxfr 𝑥 ∃* 𝑦𝐴 𝜑