Metamath Proof Explorer


Theorem nfsab

Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016) Add disjoint variable condition to avoid ax-13 . See nfsabg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypothesis nfsab.1 𝑥 𝜑
Assertion nfsab 𝑥 𝑧 ∈ { 𝑦𝜑 }

Proof

Step Hyp Ref Expression
1 nfsab.1 𝑥 𝜑
2 1 nf5ri ( 𝜑 → ∀ 𝑥 𝜑 )
3 2 hbab ( 𝑧 ∈ { 𝑦𝜑 } → ∀ 𝑥 𝑧 ∈ { 𝑦𝜑 } )
4 3 nf5i 𝑥 𝑧 ∈ { 𝑦𝜑 }