Step |
Hyp |
Ref |
Expression |
1 |
|
sbequ12 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
2 |
1
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
3 |
2
|
drnf2 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( Ⅎ 𝑧 𝜑 ↔ Ⅎ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
4 |
3
|
biimpd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( Ⅎ 𝑧 𝜑 → Ⅎ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
5 |
4
|
spsd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 Ⅎ 𝑧 𝜑 → Ⅎ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
6 |
5
|
impcom |
⊢ ( ( ∀ 𝑥 Ⅎ 𝑧 𝜑 ∧ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) |
7 |
6
|
a1d |
⊢ ( ( ∀ 𝑥 Ⅎ 𝑧 𝜑 ∧ ∀ 𝑥 𝑥 = 𝑦 ) → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
8 |
|
nfnf1 |
⊢ Ⅎ 𝑧 Ⅎ 𝑧 𝜑 |
9 |
8
|
nfal |
⊢ Ⅎ 𝑧 ∀ 𝑥 Ⅎ 𝑧 𝜑 |
10 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 |
11 |
9 10
|
nfan |
⊢ Ⅎ 𝑧 ( ∀ 𝑥 Ⅎ 𝑧 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
12 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 Ⅎ 𝑧 𝜑 |
13 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
14 |
12 13
|
nfan |
⊢ Ⅎ 𝑥 ( ∀ 𝑥 Ⅎ 𝑧 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
15 |
|
sp |
⊢ ( ∀ 𝑥 Ⅎ 𝑧 𝜑 → Ⅎ 𝑧 𝜑 ) |
16 |
15
|
adantr |
⊢ ( ( ∀ 𝑥 Ⅎ 𝑧 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑧 𝜑 ) |
17 |
|
nfsb2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) |
18 |
17
|
adantl |
⊢ ( ( ∀ 𝑥 Ⅎ 𝑧 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) |
19 |
1
|
a1i |
⊢ ( ( ∀ 𝑥 Ⅎ 𝑧 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
20 |
11 14 16 18 19
|
dvelimdf |
⊢ ( ( ∀ 𝑥 Ⅎ 𝑧 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
21 |
7 20
|
pm2.61dan |
⊢ ( ∀ 𝑥 Ⅎ 𝑧 𝜑 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) ) |