Metamath Proof Explorer
Description: Deduction version of nfsbc1 . (Contributed by NM, 23-May-2006)
(Revised by Mario Carneiro, 12-Oct-2016)
|
|
Ref |
Expression |
|
Hypothesis |
nfsbc1d.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
|
Assertion |
nfsbc1d |
⊢ ( 𝜑 → Ⅎ 𝑥 [ 𝐴 / 𝑥 ] 𝜓 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfsbc1d.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
| 2 |
|
df-sbc |
⊢ ( [ 𝐴 / 𝑥 ] 𝜓 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜓 } ) |
| 3 |
|
nfab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜓 } |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑥 ∣ 𝜓 } ) |
| 5 |
1 4
|
nfeld |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ∈ { 𝑥 ∣ 𝜓 } ) |
| 6 |
2 5
|
nfxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 [ 𝐴 / 𝑥 ] 𝜓 ) |