Metamath Proof Explorer


Theorem nfsbc1d

Description: Deduction version of nfsbc1 . (Contributed by NM, 23-May-2006) (Revised by Mario Carneiro, 12-Oct-2016)

Ref Expression
Hypothesis nfsbc1d.2 ( 𝜑 𝑥 𝐴 )
Assertion nfsbc1d ( 𝜑 → Ⅎ 𝑥 [ 𝐴 / 𝑥 ] 𝜓 )

Proof

Step Hyp Ref Expression
1 nfsbc1d.2 ( 𝜑 𝑥 𝐴 )
2 df-sbc ( [ 𝐴 / 𝑥 ] 𝜓𝐴 ∈ { 𝑥𝜓 } )
3 nfab1 𝑥 { 𝑥𝜓 }
4 3 a1i ( 𝜑 𝑥 { 𝑥𝜓 } )
5 1 4 nfeld ( 𝜑 → Ⅎ 𝑥 𝐴 ∈ { 𝑥𝜓 } )
6 2 5 nfxfrd ( 𝜑 → Ⅎ 𝑥 [ 𝐴 / 𝑥 ] 𝜓 )