Metamath Proof Explorer


Theorem nfsbcd

Description: Deduction version of nfsbc . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfsbcdw when possible. (Contributed by NM, 23-Nov-2005) (Revised by Mario Carneiro, 12-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfsbcd.1 𝑦 𝜑
nfsbcd.2 ( 𝜑 𝑥 𝐴 )
nfsbcd.3 ( 𝜑 → Ⅎ 𝑥 𝜓 )
Assertion nfsbcd ( 𝜑 → Ⅎ 𝑥 [ 𝐴 / 𝑦 ] 𝜓 )

Proof

Step Hyp Ref Expression
1 nfsbcd.1 𝑦 𝜑
2 nfsbcd.2 ( 𝜑 𝑥 𝐴 )
3 nfsbcd.3 ( 𝜑 → Ⅎ 𝑥 𝜓 )
4 df-sbc ( [ 𝐴 / 𝑦 ] 𝜓𝐴 ∈ { 𝑦𝜓 } )
5 1 3 nfabd ( 𝜑 𝑥 { 𝑦𝜓 } )
6 2 5 nfeld ( 𝜑 → Ⅎ 𝑥 𝐴 ∈ { 𝑦𝜓 } )
7 4 6 nfxfrd ( 𝜑 → Ⅎ 𝑥 [ 𝐴 / 𝑦 ] 𝜓 )