Metamath Proof Explorer


Theorem nfsbcw

Description: Bound-variable hypothesis builder for class substitution. Version of nfsbc with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 7-Sep-2014) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfsbcw.1 𝑥 𝐴
nfsbcw.2 𝑥 𝜑
Assertion nfsbcw 𝑥 [ 𝐴 / 𝑦 ] 𝜑

Proof

Step Hyp Ref Expression
1 nfsbcw.1 𝑥 𝐴
2 nfsbcw.2 𝑥 𝜑
3 nftru 𝑦
4 1 a1i ( ⊤ → 𝑥 𝐴 )
5 2 a1i ( ⊤ → Ⅎ 𝑥 𝜑 )
6 3 4 5 nfsbcdw ( ⊤ → Ⅎ 𝑥 [ 𝐴 / 𝑦 ] 𝜑 )
7 6 mptru 𝑥 [ 𝐴 / 𝑦 ] 𝜑