Metamath Proof Explorer


Theorem nfse

Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Hypotheses nffr.r 𝑥 𝑅
nffr.a 𝑥 𝐴
Assertion nfse 𝑥 𝑅 Se 𝐴

Proof

Step Hyp Ref Expression
1 nffr.r 𝑥 𝑅
2 nffr.a 𝑥 𝐴
3 df-se ( 𝑅 Se 𝐴 ↔ ∀ 𝑏𝐴 { 𝑎𝐴𝑎 𝑅 𝑏 } ∈ V )
4 nfcv 𝑥 𝑎
5 nfcv 𝑥 𝑏
6 4 1 5 nfbr 𝑥 𝑎 𝑅 𝑏
7 6 2 nfrabw 𝑥 { 𝑎𝐴𝑎 𝑅 𝑏 }
8 7 nfel1 𝑥 { 𝑎𝐴𝑎 𝑅 𝑏 } ∈ V
9 2 8 nfralw 𝑥𝑏𝐴 { 𝑎𝐴𝑎 𝑅 𝑏 } ∈ V
10 3 9 nfxfr 𝑥 𝑅 Se 𝐴