Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Founded and well-ordering relations
nfse
Metamath Proof Explorer
Description: Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro , 24-Jun-2015) (Revised by Mario Carneiro , 14-Oct-2016)
Ref
Expression
Hypotheses
nffr.r
⊢ Ⅎ 𝑥 𝑅
nffr.a
⊢ Ⅎ 𝑥 𝐴
Assertion
nfse
⊢ Ⅎ 𝑥 𝑅 Se 𝐴
Proof
Step
Hyp
Ref
Expression
1
nffr.r
⊢ Ⅎ 𝑥 𝑅
2
nffr.a
⊢ Ⅎ 𝑥 𝐴
3
df-se
⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑏 ∈ 𝐴 { 𝑎 ∈ 𝐴 ∣ 𝑎 𝑅 𝑏 } ∈ V )
4
nfcv
⊢ Ⅎ 𝑥 𝑎
5
nfcv
⊢ Ⅎ 𝑥 𝑏
6
4 1 5
nfbr
⊢ Ⅎ 𝑥 𝑎 𝑅 𝑏
7
6 2
nfrabw
⊢ Ⅎ 𝑥 { 𝑎 ∈ 𝐴 ∣ 𝑎 𝑅 𝑏 }
8
7
nfel1
⊢ Ⅎ 𝑥 { 𝑎 ∈ 𝐴 ∣ 𝑎 𝑅 𝑏 } ∈ V
9
2 8
nfralw
⊢ Ⅎ 𝑥 ∀ 𝑏 ∈ 𝐴 { 𝑎 ∈ 𝐴 ∣ 𝑎 𝑅 𝑏 } ∈ V
10
3 9
nfxfr
⊢ Ⅎ 𝑥 𝑅 Se 𝐴