Metamath Proof Explorer


Theorem nfsn

Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995)

Ref Expression
Hypothesis nfsn.1 𝑥 𝐴
Assertion nfsn 𝑥 { 𝐴 }

Proof

Step Hyp Ref Expression
1 nfsn.1 𝑥 𝐴
2 dfsn2 { 𝐴 } = { 𝐴 , 𝐴 }
3 1 1 nfpr 𝑥 { 𝐴 , 𝐴 }
4 2 3 nfcxfr 𝑥 { 𝐴 }