Metamath Proof Explorer


Theorem nfso

Description: Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015)

Ref Expression
Hypotheses nfpo.r 𝑥 𝑅
nfpo.a 𝑥 𝐴
Assertion nfso 𝑥 𝑅 Or 𝐴

Proof

Step Hyp Ref Expression
1 nfpo.r 𝑥 𝑅
2 nfpo.a 𝑥 𝐴
3 df-so ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑎𝐴𝑏𝐴 ( 𝑎 𝑅 𝑏𝑎 = 𝑏𝑏 𝑅 𝑎 ) ) )
4 1 2 nfpo 𝑥 𝑅 Po 𝐴
5 nfcv 𝑥 𝑎
6 nfcv 𝑥 𝑏
7 5 1 6 nfbr 𝑥 𝑎 𝑅 𝑏
8 nfv 𝑥 𝑎 = 𝑏
9 6 1 5 nfbr 𝑥 𝑏 𝑅 𝑎
10 7 8 9 nf3or 𝑥 ( 𝑎 𝑅 𝑏𝑎 = 𝑏𝑏 𝑅 𝑎 )
11 2 10 nfralw 𝑥𝑏𝐴 ( 𝑎 𝑅 𝑏𝑎 = 𝑏𝑏 𝑅 𝑎 )
12 2 11 nfralw 𝑥𝑎𝐴𝑏𝐴 ( 𝑎 𝑅 𝑏𝑎 = 𝑏𝑏 𝑅 𝑎 )
13 4 12 nfan 𝑥 ( 𝑅 Po 𝐴 ∧ ∀ 𝑎𝐴𝑏𝐴 ( 𝑎 𝑅 𝑏𝑎 = 𝑏𝑏 𝑅 𝑎 ) )
14 3 13 nfxfr 𝑥 𝑅 Or 𝐴