Step |
Hyp |
Ref |
Expression |
1 |
|
nfpo.r |
⊢ Ⅎ 𝑥 𝑅 |
2 |
|
nfpo.a |
⊢ Ⅎ 𝑥 𝐴 |
3 |
|
df-so |
⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) ) ) |
4 |
1 2
|
nfpo |
⊢ Ⅎ 𝑥 𝑅 Po 𝐴 |
5 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑎 |
6 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑏 |
7 |
5 1 6
|
nfbr |
⊢ Ⅎ 𝑥 𝑎 𝑅 𝑏 |
8 |
|
nfv |
⊢ Ⅎ 𝑥 𝑎 = 𝑏 |
9 |
6 1 5
|
nfbr |
⊢ Ⅎ 𝑥 𝑏 𝑅 𝑎 |
10 |
7 8 9
|
nf3or |
⊢ Ⅎ 𝑥 ( 𝑎 𝑅 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) |
11 |
2 10
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) |
12 |
2 11
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) |
13 |
4 12
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑅 Po 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) ) |
14 |
3 13
|
nfxfr |
⊢ Ⅎ 𝑥 𝑅 Or 𝐴 |