| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfpo.r | ⊢ Ⅎ 𝑥 𝑅 | 
						
							| 2 |  | nfpo.a | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 3 |  | df-so | ⊢ ( 𝑅  Or  𝐴  ↔  ( 𝑅  Po  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 𝑅 𝑏  ∨  𝑎  =  𝑏  ∨  𝑏 𝑅 𝑎 ) ) ) | 
						
							| 4 | 1 2 | nfpo | ⊢ Ⅎ 𝑥 𝑅  Po  𝐴 | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑥 𝑎 | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑥 𝑏 | 
						
							| 7 | 5 1 6 | nfbr | ⊢ Ⅎ 𝑥 𝑎 𝑅 𝑏 | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑥 𝑎  =  𝑏 | 
						
							| 9 | 6 1 5 | nfbr | ⊢ Ⅎ 𝑥 𝑏 𝑅 𝑎 | 
						
							| 10 | 7 8 9 | nf3or | ⊢ Ⅎ 𝑥 ( 𝑎 𝑅 𝑏  ∨  𝑎  =  𝑏  ∨  𝑏 𝑅 𝑎 ) | 
						
							| 11 | 2 10 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑏  ∈  𝐴 ( 𝑎 𝑅 𝑏  ∨  𝑎  =  𝑏  ∨  𝑏 𝑅 𝑎 ) | 
						
							| 12 | 2 11 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 𝑅 𝑏  ∨  𝑎  =  𝑏  ∨  𝑏 𝑅 𝑎 ) | 
						
							| 13 | 4 12 | nfan | ⊢ Ⅎ 𝑥 ( 𝑅  Po  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 𝑅 𝑏  ∨  𝑎  =  𝑏  ∨  𝑏 𝑅 𝑎 ) ) | 
						
							| 14 | 3 13 | nfxfr | ⊢ Ⅎ 𝑥 𝑅  Or  𝐴 |