Description: If x is not free in A and B , it is not free in A C_ B . (Contributed by NM, 27-Dec-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfssf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| dfssf.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | nfss | ⊢ Ⅎ 𝑥 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfssf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | dfssf.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | 1 2 | dfss3f | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
| 4 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 | |
| 5 | 3 4 | nfxfr | ⊢ Ⅎ 𝑥 𝐴 ⊆ 𝐵 |