Metamath Proof Explorer


Theorem nfsuc

Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003)

Ref Expression
Hypothesis nfsuc.1 𝑥 𝐴
Assertion nfsuc 𝑥 suc 𝐴

Proof

Step Hyp Ref Expression
1 nfsuc.1 𝑥 𝐴
2 df-suc suc 𝐴 = ( 𝐴 ∪ { 𝐴 } )
3 1 nfsn 𝑥 { 𝐴 }
4 1 3 nfun 𝑥 ( 𝐴 ∪ { 𝐴 } )
5 2 4 nfcxfr 𝑥 suc 𝐴