Step |
Hyp |
Ref |
Expression |
1 |
|
nfsum1.1 |
⊢ Ⅎ 𝑘 𝐴 |
2 |
|
df-sum |
⊢ Σ 𝑘 ∈ 𝐴 𝐵 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
3 |
|
nfcv |
⊢ Ⅎ 𝑘 ℤ |
4 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ℤ≥ ‘ 𝑚 ) |
5 |
1 4
|
nfss |
⊢ Ⅎ 𝑘 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) |
6 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑚 |
7 |
|
nfcv |
⊢ Ⅎ 𝑘 + |
8 |
1
|
nfcri |
⊢ Ⅎ 𝑘 𝑛 ∈ 𝐴 |
9 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ 𝐵 |
10 |
|
nfcv |
⊢ Ⅎ 𝑘 0 |
11 |
8 9 10
|
nfif |
⊢ Ⅎ 𝑘 if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) |
12 |
3 11
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) |
13 |
6 7 12
|
nfseq |
⊢ Ⅎ 𝑘 seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑘 ⇝ |
15 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑥 |
16 |
13 14 15
|
nfbr |
⊢ Ⅎ 𝑘 seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 |
17 |
5 16
|
nfan |
⊢ Ⅎ 𝑘 ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) |
18 |
3 17
|
nfrex |
⊢ Ⅎ 𝑘 ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) |
19 |
|
nfcv |
⊢ Ⅎ 𝑘 ℕ |
20 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑓 |
21 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 1 ... 𝑚 ) |
22 |
20 21 1
|
nff1o |
⊢ Ⅎ 𝑘 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 |
23 |
|
nfcv |
⊢ Ⅎ 𝑘 1 |
24 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 |
25 |
19 24
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
26 |
23 7 25
|
nfseq |
⊢ Ⅎ 𝑘 seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) |
27 |
26 6
|
nffv |
⊢ Ⅎ 𝑘 ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) |
28 |
27
|
nfeq2 |
⊢ Ⅎ 𝑘 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) |
29 |
22 28
|
nfan |
⊢ Ⅎ 𝑘 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
30 |
29
|
nfex |
⊢ Ⅎ 𝑘 ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
31 |
19 30
|
nfrex |
⊢ Ⅎ 𝑘 ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
32 |
18 31
|
nfor |
⊢ Ⅎ 𝑘 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
33 |
32
|
nfiotaw |
⊢ Ⅎ 𝑘 ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
34 |
2 33
|
nfcxfr |
⊢ Ⅎ 𝑘 Σ 𝑘 ∈ 𝐴 𝐵 |