Metamath Proof Explorer


Theorem nfsup

Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014)

Ref Expression
Hypotheses nfsup.1 𝑥 𝐴
nfsup.2 𝑥 𝐵
nfsup.3 𝑥 𝑅
Assertion nfsup 𝑥 sup ( 𝐴 , 𝐵 , 𝑅 )

Proof

Step Hyp Ref Expression
1 nfsup.1 𝑥 𝐴
2 nfsup.2 𝑥 𝐵
3 nfsup.3 𝑥 𝑅
4 dfsup2 sup ( 𝐴 , 𝐵 , 𝑅 ) = ( 𝐵 ∖ ( ( 𝑅𝐴 ) ∪ ( 𝑅 “ ( 𝐵 ∖ ( 𝑅𝐴 ) ) ) ) )
5 3 nfcnv 𝑥 𝑅
6 5 1 nfima 𝑥 ( 𝑅𝐴 )
7 2 6 nfdif 𝑥 ( 𝐵 ∖ ( 𝑅𝐴 ) )
8 3 7 nfima 𝑥 ( 𝑅 “ ( 𝐵 ∖ ( 𝑅𝐴 ) ) )
9 6 8 nfun 𝑥 ( ( 𝑅𝐴 ) ∪ ( 𝑅 “ ( 𝐵 ∖ ( 𝑅𝐴 ) ) ) )
10 2 9 nfdif 𝑥 ( 𝐵 ∖ ( ( 𝑅𝐴 ) ∪ ( 𝑅 “ ( 𝐵 ∖ ( 𝑅𝐴 ) ) ) ) )
11 10 nfuni 𝑥 ( 𝐵 ∖ ( ( 𝑅𝐴 ) ∪ ( 𝑅 “ ( 𝐵 ∖ ( 𝑅𝐴 ) ) ) ) )
12 4 11 nfcxfr 𝑥 sup ( 𝐴 , 𝐵 , 𝑅 )