Step |
Hyp |
Ref |
Expression |
1 |
|
nfsup.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
nfsup.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
nfsup.3 |
⊢ Ⅎ 𝑥 𝑅 |
4 |
|
dfsup2 |
⊢ sup ( 𝐴 , 𝐵 , 𝑅 ) = ∪ ( 𝐵 ∖ ( ( ◡ 𝑅 “ 𝐴 ) ∪ ( 𝑅 “ ( 𝐵 ∖ ( ◡ 𝑅 “ 𝐴 ) ) ) ) ) |
5 |
3
|
nfcnv |
⊢ Ⅎ 𝑥 ◡ 𝑅 |
6 |
5 1
|
nfima |
⊢ Ⅎ 𝑥 ( ◡ 𝑅 “ 𝐴 ) |
7 |
2 6
|
nfdif |
⊢ Ⅎ 𝑥 ( 𝐵 ∖ ( ◡ 𝑅 “ 𝐴 ) ) |
8 |
3 7
|
nfima |
⊢ Ⅎ 𝑥 ( 𝑅 “ ( 𝐵 ∖ ( ◡ 𝑅 “ 𝐴 ) ) ) |
9 |
6 8
|
nfun |
⊢ Ⅎ 𝑥 ( ( ◡ 𝑅 “ 𝐴 ) ∪ ( 𝑅 “ ( 𝐵 ∖ ( ◡ 𝑅 “ 𝐴 ) ) ) ) |
10 |
2 9
|
nfdif |
⊢ Ⅎ 𝑥 ( 𝐵 ∖ ( ( ◡ 𝑅 “ 𝐴 ) ∪ ( 𝑅 “ ( 𝐵 ∖ ( ◡ 𝑅 “ 𝐴 ) ) ) ) ) |
11 |
10
|
nfuni |
⊢ Ⅎ 𝑥 ∪ ( 𝐵 ∖ ( ( ◡ 𝑅 “ 𝐴 ) ∪ ( 𝑅 “ ( 𝐵 ∖ ( ◡ 𝑅 “ 𝐴 ) ) ) ) ) |
12 |
4 11
|
nfcxfr |
⊢ Ⅎ 𝑥 sup ( 𝐴 , 𝐵 , 𝑅 ) |