Metamath Proof Explorer


Theorem nftpos

Description: Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Hypothesis nftpos.1 𝑥 𝐹
Assertion nftpos 𝑥 tpos 𝐹

Proof

Step Hyp Ref Expression
1 nftpos.1 𝑥 𝐹
2 dftpos4 tpos 𝐹 = ( 𝐹 ∘ ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ { 𝑦 } ) )
3 nfcv 𝑥 ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ { 𝑦 } )
4 1 3 nfco 𝑥 ( 𝐹 ∘ ( 𝑦 ∈ ( ( V × V ) ∪ { ∅ } ) ↦ { 𝑦 } ) )
5 2 4 nfcxfr 𝑥 tpos 𝐹