Metamath Proof Explorer
Description: Bound-variable hypothesis builder for the union of classes.
(Contributed by NM, 15-Sep-2003) (Revised by Mario Carneiro, 14-Oct-2016)
|
|
Ref |
Expression |
|
Hypotheses |
nfun.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
nfun.2 |
⊢ Ⅎ 𝑥 𝐵 |
|
Assertion |
nfun |
⊢ Ⅎ 𝑥 ( 𝐴 ∪ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfun.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
nfun.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
df-un |
⊢ ( 𝐴 ∪ 𝐵 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵 ) } |
4 |
1
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
5 |
2
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵 |
6 |
4 5
|
nfor |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵 ) |
7 |
6
|
nfab |
⊢ Ⅎ 𝑥 { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵 ) } |
8 |
3 7
|
nfcxfr |
⊢ Ⅎ 𝑥 ( 𝐴 ∪ 𝐵 ) |