Description: Deduction version of nfuni . (Contributed by NM, 18-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nfunid.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
Assertion | nfunid | ⊢ ( 𝜑 → Ⅎ 𝑥 ∪ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfunid.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
2 | dfuni2 | ⊢ ∪ 𝐴 = { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 } | |
3 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
4 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
5 | nfvd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝑧 ) | |
6 | 4 1 5 | nfrexd | ⊢ ( 𝜑 → Ⅎ 𝑥 ∃ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 ) |
7 | 3 6 | nfabdw | ⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 } ) |
8 | 2 7 | nfcxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 ∪ 𝐴 ) |