Metamath Proof Explorer


Theorem nfunid

Description: Deduction version of nfuni . (Contributed by NM, 18-Feb-2013)

Ref Expression
Hypothesis nfunid.3 ( 𝜑 𝑥 𝐴 )
Assertion nfunid ( 𝜑 𝑥 𝐴 )

Proof

Step Hyp Ref Expression
1 nfunid.3 ( 𝜑 𝑥 𝐴 )
2 dfuni2 𝐴 = { 𝑦 ∣ ∃ 𝑧𝐴 𝑦𝑧 }
3 nfv 𝑦 𝜑
4 nfv 𝑧 𝜑
5 nfvd ( 𝜑 → Ⅎ 𝑥 𝑦𝑧 )
6 4 1 5 nfrexd ( 𝜑 → Ⅎ 𝑥𝑧𝐴 𝑦𝑧 )
7 3 6 nfabdw ( 𝜑 𝑥 { 𝑦 ∣ ∃ 𝑧𝐴 𝑦𝑧 } )
8 2 7 nfcxfrd ( 𝜑 𝑥 𝐴 )