Step |
Hyp |
Ref |
Expression |
1 |
|
eumo |
⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ∃* 𝑦 𝐴 𝐹 𝑦 ) |
2 |
|
vex |
⊢ 𝑦 ∈ V |
3 |
2
|
brresi |
⊢ ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ) |
4 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) |
5 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ↔ 𝐴 𝐹 𝑦 ) ) |
6 |
4 5
|
sylbi |
⊢ ( 𝑥 ∈ { 𝐴 } → ( 𝑥 𝐹 𝑦 ↔ 𝐴 𝐹 𝑦 ) ) |
7 |
6
|
biimpa |
⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) → 𝐴 𝐹 𝑦 ) |
8 |
3 7
|
sylbi |
⊢ ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 → 𝐴 𝐹 𝑦 ) |
9 |
8
|
moimi |
⊢ ( ∃* 𝑦 𝐴 𝐹 𝑦 → ∃* 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) |
10 |
1 9
|
syl |
⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ∃* 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) |
11 |
|
tz6.12-2 |
⊢ ( ¬ ∃! 𝑦 𝐴 𝐹 𝑦 → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
12 |
10 11
|
nsyl4 |
⊢ ( ¬ ( 𝐹 ‘ 𝐴 ) = ∅ → ∃* 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) |
13 |
12
|
alrimiv |
⊢ ( ¬ ( 𝐹 ‘ 𝐴 ) = ∅ → ∀ 𝑥 ∃* 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) |
14 |
|
relres |
⊢ Rel ( 𝐹 ↾ { 𝐴 } ) |
15 |
13 14
|
jctil |
⊢ ( ¬ ( 𝐹 ‘ 𝐴 ) = ∅ → ( Rel ( 𝐹 ↾ { 𝐴 } ) ∧ ∀ 𝑥 ∃* 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) ) |
16 |
|
dffun6 |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ ( Rel ( 𝐹 ↾ { 𝐴 } ) ∧ ∀ 𝑥 ∃* 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) ) |
17 |
15 16
|
sylibr |
⊢ ( ¬ ( 𝐹 ‘ 𝐴 ) = ∅ → Fun ( 𝐹 ↾ { 𝐴 } ) ) |
18 |
17
|
con1i |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |