Metamath Proof Explorer


Theorem nfvres

Description: The value of a non-member of a restriction is the empty set. (An artifact of our function value definition.) (Contributed by NM, 13-Nov-1995)

Ref Expression
Assertion nfvres ( ¬ 𝐴𝐵 → ( ( 𝐹𝐵 ) ‘ 𝐴 ) = ∅ )

Proof

Step Hyp Ref Expression
1 dmres dom ( 𝐹𝐵 ) = ( 𝐵 ∩ dom 𝐹 )
2 inss1 ( 𝐵 ∩ dom 𝐹 ) ⊆ 𝐵
3 1 2 eqsstri dom ( 𝐹𝐵 ) ⊆ 𝐵
4 3 sseli ( 𝐴 ∈ dom ( 𝐹𝐵 ) → 𝐴𝐵 )
5 ndmfv ( ¬ 𝐴 ∈ dom ( 𝐹𝐵 ) → ( ( 𝐹𝐵 ) ‘ 𝐴 ) = ∅ )
6 4 5 nsyl5 ( ¬ 𝐴𝐵 → ( ( 𝐹𝐵 ) ‘ 𝐴 ) = ∅ )