Metamath Proof Explorer
Description: Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015) (Revised by Mario Carneiro, 14-Oct-2016)
|
|
Ref |
Expression |
|
Hypotheses |
nffr.r |
⊢ Ⅎ 𝑥 𝑅 |
|
|
nffr.a |
⊢ Ⅎ 𝑥 𝐴 |
|
Assertion |
nfwe |
⊢ Ⅎ 𝑥 𝑅 We 𝐴 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nffr.r |
⊢ Ⅎ 𝑥 𝑅 |
2 |
|
nffr.a |
⊢ Ⅎ 𝑥 𝐴 |
3 |
|
df-we |
⊢ ( 𝑅 We 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴 ) ) |
4 |
1 2
|
nffr |
⊢ Ⅎ 𝑥 𝑅 Fr 𝐴 |
5 |
1 2
|
nfso |
⊢ Ⅎ 𝑥 𝑅 Or 𝐴 |
6 |
4 5
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴 ) |
7 |
3 6
|
nfxfr |
⊢ Ⅎ 𝑥 𝑅 We 𝐴 |