Metamath Proof Explorer


Theorem nfwrd

Description: Hypothesis builder for Word S . (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Hypothesis nfwrd.1 𝑥 𝑆
Assertion nfwrd 𝑥 Word 𝑆

Proof

Step Hyp Ref Expression
1 nfwrd.1 𝑥 𝑆
2 df-word Word 𝑆 = { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 }
3 nfcv 𝑥0
4 nfcv 𝑥 𝑤
5 nfcv 𝑥 ( 0 ..^ 𝑙 )
6 4 5 1 nff 𝑥 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆
7 3 6 nfrex 𝑥𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆
8 7 nfab 𝑥 { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 }
9 2 8 nfcxfr 𝑥 Word 𝑆