Metamath Proof Explorer


Theorem nfxnegd

Description: Deduction version of nfxneg . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis nfxnegd.1 ( 𝜑 𝑥 𝐴 )
Assertion nfxnegd ( 𝜑 𝑥 -𝑒 𝐴 )

Proof

Step Hyp Ref Expression
1 nfxnegd.1 ( 𝜑 𝑥 𝐴 )
2 df-xneg -𝑒 𝐴 = if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) )
3 nfcvd ( 𝜑 𝑥 +∞ )
4 1 3 nfeqd ( 𝜑 → Ⅎ 𝑥 𝐴 = +∞ )
5 nfcvd ( 𝜑 𝑥 -∞ )
6 1 5 nfeqd ( 𝜑 → Ⅎ 𝑥 𝐴 = -∞ )
7 1 nfnegd ( 𝜑 𝑥 - 𝐴 )
8 6 3 7 nfifd ( 𝜑 𝑥 if ( 𝐴 = -∞ , +∞ , - 𝐴 ) )
9 4 5 8 nfifd ( 𝜑 𝑥 if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) )
10 2 9 nfcxfrd ( 𝜑 𝑥 -𝑒 𝐴 )