Description: Deduction version of nfxneg . (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nfxnegd.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
Assertion | nfxnegd | ⊢ ( 𝜑 → Ⅎ 𝑥 -𝑒 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxnegd.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
2 | df-xneg | ⊢ -𝑒 𝐴 = if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) | |
3 | nfcvd | ⊢ ( 𝜑 → Ⅎ 𝑥 +∞ ) | |
4 | 1 3 | nfeqd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 = +∞ ) |
5 | nfcvd | ⊢ ( 𝜑 → Ⅎ 𝑥 -∞ ) | |
6 | 1 5 | nfeqd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 = -∞ ) |
7 | 1 | nfnegd | ⊢ ( 𝜑 → Ⅎ 𝑥 - 𝐴 ) |
8 | 6 3 7 | nfifd | ⊢ ( 𝜑 → Ⅎ 𝑥 if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) |
9 | 4 5 8 | nfifd | ⊢ ( 𝜑 → Ⅎ 𝑥 if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) ) |
10 | 2 9 | nfcxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 -𝑒 𝐴 ) |