Metamath Proof Explorer


Theorem nfxp

Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses nfxp.1 𝑥 𝐴
nfxp.2 𝑥 𝐵
Assertion nfxp 𝑥 ( 𝐴 × 𝐵 )

Proof

Step Hyp Ref Expression
1 nfxp.1 𝑥 𝐴
2 nfxp.2 𝑥 𝐵
3 df-xp ( 𝐴 × 𝐵 ) = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦𝐴𝑧𝐵 ) }
4 1 nfcri 𝑥 𝑦𝐴
5 2 nfcri 𝑥 𝑧𝐵
6 4 5 nfan 𝑥 ( 𝑦𝐴𝑧𝐵 )
7 6 nfopab 𝑥 { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦𝐴𝑧𝐵 ) }
8 3 7 nfcxfr 𝑥 ( 𝐴 × 𝐵 )