Description: A normed group homomorphism has a real operator norm. (Contributed by Mario Carneiro, 18-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
Assertion | nghmcl | ⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
2 | 1 | isnghm | ⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) ) |
3 | 2 | simprbi | ⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |
4 | 3 | simprd | ⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) |