| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nghmrcl1 |
⊢ ( 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) → 𝑆 ∈ NrmGrp ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑇 NGHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → 𝑆 ∈ NrmGrp ) |
| 3 |
|
nghmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑇 NGHom 𝑈 ) → 𝑈 ∈ NrmGrp ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑇 NGHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → 𝑈 ∈ NrmGrp ) |
| 5 |
|
nghmghm |
⊢ ( 𝐹 ∈ ( 𝑇 NGHom 𝑈 ) → 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ) |
| 6 |
|
nghmghm |
⊢ ( 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) → 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 7 |
|
ghmco |
⊢ ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ) |
| 8 |
5 6 7
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑇 NGHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ) |
| 9 |
|
eqid |
⊢ ( 𝑇 normOp 𝑈 ) = ( 𝑇 normOp 𝑈 ) |
| 10 |
9
|
nghmcl |
⊢ ( 𝐹 ∈ ( 𝑇 NGHom 𝑈 ) → ( ( 𝑇 normOp 𝑈 ) ‘ 𝐹 ) ∈ ℝ ) |
| 11 |
|
eqid |
⊢ ( 𝑆 normOp 𝑇 ) = ( 𝑆 normOp 𝑇 ) |
| 12 |
11
|
nghmcl |
⊢ ( 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) → ( ( 𝑆 normOp 𝑇 ) ‘ 𝐺 ) ∈ ℝ ) |
| 13 |
|
remulcl |
⊢ ( ( ( ( 𝑇 normOp 𝑈 ) ‘ 𝐹 ) ∈ ℝ ∧ ( ( 𝑆 normOp 𝑇 ) ‘ 𝐺 ) ∈ ℝ ) → ( ( ( 𝑇 normOp 𝑈 ) ‘ 𝐹 ) · ( ( 𝑆 normOp 𝑇 ) ‘ 𝐺 ) ) ∈ ℝ ) |
| 14 |
10 12 13
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑇 NGHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → ( ( ( 𝑇 normOp 𝑈 ) ‘ 𝐹 ) · ( ( 𝑆 normOp 𝑇 ) ‘ 𝐺 ) ) ∈ ℝ ) |
| 15 |
|
eqid |
⊢ ( 𝑆 normOp 𝑈 ) = ( 𝑆 normOp 𝑈 ) |
| 16 |
15 9 11
|
nmoco |
⊢ ( ( 𝐹 ∈ ( 𝑇 NGHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → ( ( 𝑆 normOp 𝑈 ) ‘ ( 𝐹 ∘ 𝐺 ) ) ≤ ( ( ( 𝑇 normOp 𝑈 ) ‘ 𝐹 ) · ( ( 𝑆 normOp 𝑇 ) ‘ 𝐺 ) ) ) |
| 17 |
15
|
bddnghm |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑈 ∈ NrmGrp ∧ ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ) ∧ ( ( ( ( 𝑇 normOp 𝑈 ) ‘ 𝐹 ) · ( ( 𝑆 normOp 𝑇 ) ‘ 𝐺 ) ) ∈ ℝ ∧ ( ( 𝑆 normOp 𝑈 ) ‘ ( 𝐹 ∘ 𝐺 ) ) ≤ ( ( ( 𝑇 normOp 𝑈 ) ‘ 𝐹 ) · ( ( 𝑆 normOp 𝑇 ) ‘ 𝐺 ) ) ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 NGHom 𝑈 ) ) |
| 18 |
2 4 8 14 16 17
|
syl32anc |
⊢ ( ( 𝐹 ∈ ( 𝑇 NGHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 NGHom 𝑈 ) ) |