| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmofval.1 | ⊢ 𝑁  =  ( 𝑆  normOp  𝑇 ) | 
						
							| 2 |  | oveq12 | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑡  =  𝑇 )  →  ( 𝑠  normOp  𝑡 )  =  ( 𝑆  normOp  𝑇 ) ) | 
						
							| 3 | 2 1 | eqtr4di | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑡  =  𝑇 )  →  ( 𝑠  normOp  𝑡 )  =  𝑁 ) | 
						
							| 4 | 3 | cnveqd | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑡  =  𝑇 )  →  ◡ ( 𝑠  normOp  𝑡 )  =  ◡ 𝑁 ) | 
						
							| 5 | 4 | imaeq1d | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑡  =  𝑇 )  →  ( ◡ ( 𝑠  normOp  𝑡 )  “  ℝ )  =  ( ◡ 𝑁  “  ℝ ) ) | 
						
							| 6 |  | df-nghm | ⊢  NGHom   =  ( 𝑠  ∈  NrmGrp ,  𝑡  ∈  NrmGrp  ↦  ( ◡ ( 𝑠  normOp  𝑡 )  “  ℝ ) ) | 
						
							| 7 | 1 | ovexi | ⊢ 𝑁  ∈  V | 
						
							| 8 | 7 | cnvex | ⊢ ◡ 𝑁  ∈  V | 
						
							| 9 | 8 | imaex | ⊢ ( ◡ 𝑁  “  ℝ )  ∈  V | 
						
							| 10 | 5 6 9 | ovmpoa | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  ( 𝑆  NGHom  𝑇 )  =  ( ◡ 𝑁  “  ℝ ) ) | 
						
							| 11 | 6 | mpondm0 | ⊢ ( ¬  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  ( 𝑆  NGHom  𝑇 )  =  ∅ ) | 
						
							| 12 |  | nmoffn | ⊢  normOp   Fn  ( NrmGrp  ×  NrmGrp ) | 
						
							| 13 | 12 | fndmi | ⊢ dom   normOp   =  ( NrmGrp  ×  NrmGrp ) | 
						
							| 14 | 13 | ndmov | ⊢ ( ¬  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  ( 𝑆  normOp  𝑇 )  =  ∅ ) | 
						
							| 15 | 1 14 | eqtrid | ⊢ ( ¬  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  𝑁  =  ∅ ) | 
						
							| 16 | 15 | cnveqd | ⊢ ( ¬  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  ◡ 𝑁  =  ◡ ∅ ) | 
						
							| 17 |  | cnv0 | ⊢ ◡ ∅  =  ∅ | 
						
							| 18 | 16 17 | eqtrdi | ⊢ ( ¬  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  ◡ 𝑁  =  ∅ ) | 
						
							| 19 | 18 | imaeq1d | ⊢ ( ¬  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  ( ◡ 𝑁  “  ℝ )  =  ( ∅  “  ℝ ) ) | 
						
							| 20 |  | 0ima | ⊢ ( ∅  “  ℝ )  =  ∅ | 
						
							| 21 | 19 20 | eqtrdi | ⊢ ( ¬  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  ( ◡ 𝑁  “  ℝ )  =  ∅ ) | 
						
							| 22 | 11 21 | eqtr4d | ⊢ ( ¬  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  ( 𝑆  NGHom  𝑇 )  =  ( ◡ 𝑁  “  ℝ ) ) | 
						
							| 23 | 10 22 | pm2.61i | ⊢ ( 𝑆  NGHom  𝑇 )  =  ( ◡ 𝑁  “  ℝ ) |