Description: A normed group homomorphism is a group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | nghmghm | ⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( 𝑆 normOp 𝑇 ) = ( 𝑆 normOp 𝑇 ) | |
2 | 1 | isnghm | ⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( ( 𝑆 normOp 𝑇 ) ‘ 𝐹 ) ∈ ℝ ) ) ) |
3 | 2 | simprbi | ⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( ( 𝑆 normOp 𝑇 ) ‘ 𝐹 ) ∈ ℝ ) ) |
4 | 3 | simpld | ⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |