Step |
Hyp |
Ref |
Expression |
1 |
|
nglmle.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
nglmle.2 |
⊢ 𝐷 = ( ( dist ‘ 𝐺 ) ↾ ( 𝑋 × 𝑋 ) ) |
3 |
|
nglmle.3 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
4 |
|
nglmle.5 |
⊢ 𝑁 = ( norm ‘ 𝐺 ) |
5 |
|
nglmle.6 |
⊢ ( 𝜑 → 𝐺 ∈ NrmGrp ) |
6 |
|
nglmle.7 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) |
7 |
|
nglmle.8 |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
8 |
|
nglmle.9 |
⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
9 |
|
nglmle.10 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑅 ) |
10 |
|
ngpgrp |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) |
11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
12 |
|
ngpms |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ MetSp ) |
14 |
|
msxms |
⊢ ( 𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ ∞MetSp ) |
16 |
1 2
|
xmsxmet |
⊢ ( 𝐺 ∈ ∞MetSp → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
18 |
3
|
mopntopon |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
20 |
|
lmcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝑃 ∈ 𝑋 ) |
21 |
19 7 20
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
22 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
23 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
24 |
4 1 22 23 2
|
nmval2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑃 ) = ( 𝑃 𝐷 ( 0g ‘ 𝐺 ) ) ) |
25 |
11 21 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑃 ) = ( 𝑃 𝐷 ( 0g ‘ 𝐺 ) ) ) |
26 |
1 22
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
27 |
11 26
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
28 |
|
xmetsym |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ ( 0g ‘ 𝐺 ) ∈ 𝑋 ) → ( 𝑃 𝐷 ( 0g ‘ 𝐺 ) ) = ( ( 0g ‘ 𝐺 ) 𝐷 𝑃 ) ) |
29 |
17 21 27 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 𝐷 ( 0g ‘ 𝐺 ) ) = ( ( 0g ‘ 𝐺 ) 𝐷 𝑃 ) ) |
30 |
25 29
|
eqtrd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑃 ) = ( ( 0g ‘ 𝐺 ) 𝐷 𝑃 ) ) |
31 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
32 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
33 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐺 ∈ Grp ) |
34 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
35 |
4 1 22 23 2
|
nmval2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 0g ‘ 𝐺 ) ) ) |
36 |
33 34 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 0g ‘ 𝐺 ) ) ) |
37 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
38 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
39 |
|
xmetsym |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 0g ‘ 𝐺 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 0g ‘ 𝐺 ) ) = ( ( 0g ‘ 𝐺 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) ) |
40 |
37 34 38 39
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 0g ‘ 𝐺 ) ) = ( ( 0g ‘ 𝐺 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) ) |
41 |
36 40
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( 0g ‘ 𝐺 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) ) |
42 |
41 9
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 0g ‘ 𝐺 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑅 ) |
43 |
31 3 17 32 7 27 8 42
|
lmle |
⊢ ( 𝜑 → ( ( 0g ‘ 𝐺 ) 𝐷 𝑃 ) ≤ 𝑅 ) |
44 |
30 43
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑃 ) ≤ 𝑅 ) |