Step |
Hyp |
Ref |
Expression |
1 |
|
ngpds.n |
⊢ 𝑁 = ( norm ‘ 𝐺 ) |
2 |
|
ngpds.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
3 |
|
ngpds.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
ngpds.d |
⊢ 𝐷 = ( dist ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) |
6 |
1 3 4 2 5
|
isngp2 |
⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( 𝑁 ∘ − ) = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ) |
7 |
6
|
simp3bi |
⊢ ( 𝐺 ∈ NrmGrp → ( 𝑁 ∘ − ) = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ∘ − ) = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) |
9 |
8
|
oveqd |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( 𝑁 ∘ − ) 𝐵 ) = ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) ) |
10 |
|
ngpgrp |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) |
11 |
2 3
|
grpsubf |
⊢ ( 𝐺 ∈ Grp → − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
12 |
10 11
|
syl |
⊢ ( 𝐺 ∈ NrmGrp → − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
14 |
|
opelxpi |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) |
15 |
14
|
3adant1 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) |
16 |
|
fvco3 |
⊢ ( ( − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) → ( ( 𝑁 ∘ − ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( 𝑁 ‘ ( − ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
17 |
13 15 16
|
syl2anc |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ∘ − ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( 𝑁 ‘ ( − ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
18 |
|
df-ov |
⊢ ( 𝐴 ( 𝑁 ∘ − ) 𝐵 ) = ( ( 𝑁 ∘ − ) ‘ 〈 𝐴 , 𝐵 〉 ) |
19 |
|
df-ov |
⊢ ( 𝐴 − 𝐵 ) = ( − ‘ 〈 𝐴 , 𝐵 〉 ) |
20 |
19
|
fveq2i |
⊢ ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) = ( 𝑁 ‘ ( − ‘ 〈 𝐴 , 𝐵 〉 ) ) |
21 |
17 18 20
|
3eqtr4g |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( 𝑁 ∘ − ) 𝐵 ) = ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ) |
22 |
|
ovres |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) |
23 |
22
|
3adant1 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) |
24 |
9 21 23
|
3eqtr3rd |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ) |