| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ngpds2.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ngpds2.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | ngpds2.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | ngpds2.d | ⊢ 𝐷  =  ( dist ‘ 𝐺 ) | 
						
							| 5 | 1 2 3 4 | ngpds2 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐵 )  =  ( ( 𝐴  −  𝐵 ) 𝐷  0  ) ) | 
						
							| 6 |  | ngpxms | ⊢ ( 𝐺  ∈  NrmGrp  →  𝐺  ∈  ∞MetSp ) | 
						
							| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐺  ∈  ∞MetSp ) | 
						
							| 8 |  | ngpgrp | ⊢ ( 𝐺  ∈  NrmGrp  →  𝐺  ∈  Grp ) | 
						
							| 9 | 1 3 | grpsubcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  −  𝐵 )  ∈  𝑋 ) | 
						
							| 10 | 8 9 | syl3an1 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  −  𝐵 )  ∈  𝑋 ) | 
						
							| 11 | 8 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐺  ∈  Grp ) | 
						
							| 12 | 1 2 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →   0   ∈  𝑋 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →   0   ∈  𝑋 ) | 
						
							| 14 | 1 4 | xmssym | ⊢ ( ( 𝐺  ∈  ∞MetSp  ∧  ( 𝐴  −  𝐵 )  ∈  𝑋  ∧   0   ∈  𝑋 )  →  ( ( 𝐴  −  𝐵 ) 𝐷  0  )  =  (  0  𝐷 ( 𝐴  −  𝐵 ) ) ) | 
						
							| 15 | 7 10 13 14 | syl3anc | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴  −  𝐵 ) 𝐷  0  )  =  (  0  𝐷 ( 𝐴  −  𝐵 ) ) ) | 
						
							| 16 | 5 15 | eqtrd | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐵 )  =  (  0  𝐷 ( 𝐴  −  𝐵 ) ) ) |