| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ngpds2.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ngpds2.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | ngpds2.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | ngpds2.d | ⊢ 𝐷  =  ( dist ‘ 𝐺 ) | 
						
							| 5 |  | ngpxms | ⊢ ( 𝐺  ∈  NrmGrp  →  𝐺  ∈  ∞MetSp ) | 
						
							| 6 | 1 4 | xmssym | ⊢ ( ( 𝐺  ∈  ∞MetSp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐵 )  =  ( 𝐵 𝐷 𝐴 ) ) | 
						
							| 7 | 5 6 | syl3an1 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐵 )  =  ( 𝐵 𝐷 𝐴 ) ) | 
						
							| 8 | 1 2 3 4 | ngpds3 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐵  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝐵 𝐷 𝐴 )  =  (  0  𝐷 ( 𝐵  −  𝐴 ) ) ) | 
						
							| 9 | 8 | 3com23 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐵 𝐷 𝐴 )  =  (  0  𝐷 ( 𝐵  −  𝐴 ) ) ) | 
						
							| 10 | 7 9 | eqtrd | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐵 )  =  (  0  𝐷 ( 𝐵  −  𝐴 ) ) ) |