Description: A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) | |
| 4 | 1 2 3 | isngp | ⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( ( norm ‘ 𝐺 ) ∘ ( -g ‘ 𝐺 ) ) ⊆ ( dist ‘ 𝐺 ) ) ) |
| 5 | 4 | simp1bi | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) |