Step |
Hyp |
Ref |
Expression |
1 |
|
ngpinvds.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
ngpinvds.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
3 |
|
ngpinvds.d |
⊢ 𝐷 = ( dist ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
5 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐺 ∈ Abel ) |
6 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) |
7 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
8 |
1 4 2 5 6 7
|
ablsub2inv |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐼 ‘ 𝐵 ) ( -g ‘ 𝐺 ) ( 𝐼 ‘ 𝐴 ) ) = ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) |
9 |
8
|
fveq2d |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( norm ‘ 𝐺 ) ‘ ( ( 𝐼 ‘ 𝐵 ) ( -g ‘ 𝐺 ) ( 𝐼 ‘ 𝐴 ) ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) |
10 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐺 ∈ NrmGrp ) |
11 |
|
ngpgrp |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) |
12 |
10 11
|
syl |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
13 |
1 2
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ) |
14 |
12 7 13
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ) |
15 |
1 2
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ) → ( 𝐼 ‘ 𝐵 ) ∈ 𝑋 ) |
16 |
12 6 15
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐼 ‘ 𝐵 ) ∈ 𝑋 ) |
17 |
|
eqid |
⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) |
18 |
17 1 4 3
|
ngpdsr |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ∧ ( 𝐼 ‘ 𝐵 ) ∈ 𝑋 ) → ( ( 𝐼 ‘ 𝐴 ) 𝐷 ( 𝐼 ‘ 𝐵 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( ( 𝐼 ‘ 𝐵 ) ( -g ‘ 𝐺 ) ( 𝐼 ‘ 𝐴 ) ) ) ) |
19 |
10 14 16 18
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐼 ‘ 𝐴 ) 𝐷 ( 𝐼 ‘ 𝐵 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( ( 𝐼 ‘ 𝐵 ) ( -g ‘ 𝐺 ) ( 𝐼 ‘ 𝐴 ) ) ) ) |
20 |
17 1 4 3
|
ngpds |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) |
21 |
10 7 6 20
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) |
22 |
9 19 21
|
3eqtr4d |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐼 ‘ 𝐴 ) 𝐷 ( 𝐼 ‘ 𝐵 ) ) = ( 𝐴 𝐷 𝐵 ) ) |