Metamath Proof Explorer


Theorem ngpinvds

Description: Two elements are the same distance apart as their inverses. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses ngpinvds.x 𝑋 = ( Base ‘ 𝐺 )
ngpinvds.i 𝐼 = ( invg𝐺 )
ngpinvds.d 𝐷 = ( dist ‘ 𝐺 )
Assertion ngpinvds ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( ( 𝐼𝐴 ) 𝐷 ( 𝐼𝐵 ) ) = ( 𝐴 𝐷 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ngpinvds.x 𝑋 = ( Base ‘ 𝐺 )
2 ngpinvds.i 𝐼 = ( invg𝐺 )
3 ngpinvds.d 𝐷 = ( dist ‘ 𝐺 )
4 eqid ( -g𝐺 ) = ( -g𝐺 )
5 simplr ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → 𝐺 ∈ Abel )
6 simprr ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → 𝐵𝑋 )
7 simprl ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → 𝐴𝑋 )
8 1 4 2 5 6 7 ablsub2inv ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( ( 𝐼𝐵 ) ( -g𝐺 ) ( 𝐼𝐴 ) ) = ( 𝐴 ( -g𝐺 ) 𝐵 ) )
9 8 fveq2d ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( ( norm ‘ 𝐺 ) ‘ ( ( 𝐼𝐵 ) ( -g𝐺 ) ( 𝐼𝐴 ) ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 ( -g𝐺 ) 𝐵 ) ) )
10 simpll ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → 𝐺 ∈ NrmGrp )
11 ngpgrp ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp )
12 10 11 syl ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → 𝐺 ∈ Grp )
13 1 2 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( 𝐼𝐴 ) ∈ 𝑋 )
14 12 7 13 syl2anc ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( 𝐼𝐴 ) ∈ 𝑋 )
15 1 2 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝐵𝑋 ) → ( 𝐼𝐵 ) ∈ 𝑋 )
16 12 6 15 syl2anc ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( 𝐼𝐵 ) ∈ 𝑋 )
17 eqid ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 )
18 17 1 4 3 ngpdsr ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐼𝐴 ) ∈ 𝑋 ∧ ( 𝐼𝐵 ) ∈ 𝑋 ) → ( ( 𝐼𝐴 ) 𝐷 ( 𝐼𝐵 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( ( 𝐼𝐵 ) ( -g𝐺 ) ( 𝐼𝐴 ) ) ) )
19 10 14 16 18 syl3anc ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( ( 𝐼𝐴 ) 𝐷 ( 𝐼𝐵 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( ( 𝐼𝐵 ) ( -g𝐺 ) ( 𝐼𝐴 ) ) ) )
20 17 1 4 3 ngpds ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 ( -g𝐺 ) 𝐵 ) ) )
21 10 7 6 20 syl3anc ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 ( -g𝐺 ) 𝐵 ) ) )
22 9 19 21 3eqtr4d ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( ( 𝐼𝐴 ) 𝐷 ( 𝐼𝐵 ) ) = ( 𝐴 𝐷 𝐵 ) )