| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ngppropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 2 |
|
ngppropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 3 |
|
ngppropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 4 |
|
ngppropd.4 |
⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) ) |
| 5 |
|
ngppropd.5 |
⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐿 ) ) |
| 6 |
1 2 4 5
|
mspropd |
⊢ ( 𝜑 → ( 𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → ( 𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp ) ) |
| 8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → 𝐾 ∈ Grp ) |
| 11 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ Grp ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) ) |
| 13 |
8 9 10 11 12
|
nmpropd2 |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → ( norm ‘ 𝐾 ) = ( norm ‘ 𝐿 ) ) |
| 14 |
8 9 10 11
|
grpsubpropd2 |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → ( -g ‘ 𝐾 ) = ( -g ‘ 𝐿 ) ) |
| 15 |
13 14
|
coeq12d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) ) |
| 16 |
1
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 17 |
16
|
reseq2d |
⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 18 |
2
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) |
| 19 |
18
|
reseq2d |
⊢ ( 𝜑 → ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
| 20 |
4 17 19
|
3eqtr3d |
⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
| 22 |
15 21
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → ( ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ↔ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) |
| 23 |
7 22
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ Grp ) → ( ( 𝐾 ∈ MetSp ∧ ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ↔ ( 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) |
| 24 |
23
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝐾 ∈ Grp ∧ ( 𝐾 ∈ MetSp ∧ ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) ↔ ( 𝐾 ∈ Grp ∧ ( 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) ) |
| 25 |
1 2 3
|
grppropd |
⊢ ( 𝜑 → ( 𝐾 ∈ Grp ↔ 𝐿 ∈ Grp ) ) |
| 26 |
25
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝐾 ∈ Grp ∧ ( 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ↔ ( 𝐿 ∈ Grp ∧ ( 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) ) |
| 27 |
24 26
|
bitrd |
⊢ ( 𝜑 → ( ( 𝐾 ∈ Grp ∧ ( 𝐾 ∈ MetSp ∧ ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) ↔ ( 𝐿 ∈ Grp ∧ ( 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) ) |
| 28 |
|
3anass |
⊢ ( ( 𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧ ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ↔ ( 𝐾 ∈ Grp ∧ ( 𝐾 ∈ MetSp ∧ ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) ) |
| 29 |
|
3anass |
⊢ ( ( 𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ↔ ( 𝐿 ∈ Grp ∧ ( 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) |
| 30 |
27 28 29
|
3bitr4g |
⊢ ( 𝜑 → ( ( 𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧ ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ↔ ( 𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) ) |
| 31 |
|
eqid |
⊢ ( norm ‘ 𝐾 ) = ( norm ‘ 𝐾 ) |
| 32 |
|
eqid |
⊢ ( -g ‘ 𝐾 ) = ( -g ‘ 𝐾 ) |
| 33 |
|
eqid |
⊢ ( dist ‘ 𝐾 ) = ( dist ‘ 𝐾 ) |
| 34 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 35 |
|
eqid |
⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 36 |
31 32 33 34 35
|
isngp2 |
⊢ ( 𝐾 ∈ NrmGrp ↔ ( 𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧ ( ( norm ‘ 𝐾 ) ∘ ( -g ‘ 𝐾 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
| 37 |
|
eqid |
⊢ ( norm ‘ 𝐿 ) = ( norm ‘ 𝐿 ) |
| 38 |
|
eqid |
⊢ ( -g ‘ 𝐿 ) = ( -g ‘ 𝐿 ) |
| 39 |
|
eqid |
⊢ ( dist ‘ 𝐿 ) = ( dist ‘ 𝐿 ) |
| 40 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 41 |
|
eqid |
⊢ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) |
| 42 |
37 38 39 40 41
|
isngp2 |
⊢ ( 𝐿 ∈ NrmGrp ↔ ( 𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧ ( ( norm ‘ 𝐿 ) ∘ ( -g ‘ 𝐿 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) ) |
| 43 |
30 36 42
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐾 ∈ NrmGrp ↔ 𝐿 ∈ NrmGrp ) ) |