| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ngprcan.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
ngprcan.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
ngprcan.d |
⊢ 𝐷 = ( dist ‘ 𝐺 ) |
| 4 |
|
ngpgrp |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) |
| 5 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 6 |
1 2 5
|
grppnpcan2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝐶 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) = ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) |
| 7 |
4 6
|
sylan |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝐶 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) = ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( norm ‘ 𝐺 ) ‘ ( ( 𝐴 + 𝐶 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) |
| 9 |
|
simpl |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐺 ∈ NrmGrp ) |
| 10 |
4
|
adantr |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 11 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
| 12 |
|
simpr3 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐶 ∈ 𝑋 ) |
| 13 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 + 𝐶 ) ∈ 𝑋 ) |
| 14 |
10 11 12 13
|
syl3anc |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 + 𝐶 ) ∈ 𝑋 ) |
| 15 |
|
simpr2 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) |
| 16 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 + 𝐶 ) ∈ 𝑋 ) |
| 17 |
10 15 12 16
|
syl3anc |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 + 𝐶 ) ∈ 𝑋 ) |
| 18 |
|
eqid |
⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) |
| 19 |
18 1 5 3
|
ngpds |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 + 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 + 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 + 𝐶 ) 𝐷 ( 𝐵 + 𝐶 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( ( 𝐴 + 𝐶 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) ) ) |
| 20 |
9 14 17 19
|
syl3anc |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝐶 ) 𝐷 ( 𝐵 + 𝐶 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( ( 𝐴 + 𝐶 ) ( -g ‘ 𝐺 ) ( 𝐵 + 𝐶 ) ) ) ) |
| 21 |
18 1 5 3
|
ngpds |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) |
| 22 |
9 11 15 21
|
syl3anc |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) |
| 23 |
8 20 22
|
3eqtr4d |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝐶 ) 𝐷 ( 𝐵 + 𝐶 ) ) = ( 𝐴 𝐷 𝐵 ) ) |