Step |
Hyp |
Ref |
Expression |
1 |
|
ngpsubcan.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
ngpsubcan.m |
⊢ − = ( -g ‘ 𝐺 ) |
3 |
|
ngpsubcan.d |
⊢ 𝐷 = ( dist ‘ 𝐺 ) |
4 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
5 |
|
simpr3 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐶 ∈ 𝑋 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
7 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
8 |
1 6 7 2
|
grpsubval |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 − 𝐶 ) = ( 𝐴 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
9 |
4 5 8
|
syl2anc |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 − 𝐶 ) = ( 𝐴 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
10 |
|
simpr2 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) |
11 |
1 6 7 2
|
grpsubval |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 − 𝐶 ) = ( 𝐵 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
12 |
10 5 11
|
syl2anc |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 − 𝐶 ) = ( 𝐵 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
13 |
9 12
|
oveq12d |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 − 𝐶 ) 𝐷 ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) 𝐷 ( 𝐵 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) ) ) |
14 |
|
simpl |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐺 ∈ NrmGrp ) |
15 |
|
ngpgrp |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) |
16 |
1 7
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐶 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
17 |
15 5 16
|
syl2an2r |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
18 |
1 6 3
|
ngprcan |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) ) → ( ( 𝐴 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) 𝐷 ( 𝐵 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) ) = ( 𝐴 𝐷 𝐵 ) ) |
19 |
14 4 10 17 18
|
syl13anc |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) 𝐷 ( 𝐵 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) ) = ( 𝐴 𝐷 𝐵 ) ) |
20 |
13 19
|
eqtrd |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 − 𝐶 ) 𝐷 ( 𝐵 − 𝐶 ) ) = ( 𝐴 𝐷 𝐵 ) ) |