Metamath Proof Explorer


Theorem ngpxms

Description: A normed group is an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion ngpxms ( 𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp )

Proof

Step Hyp Ref Expression
1 ngpms ( 𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp )
2 msxms ( 𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp )
3 1 2 syl ( 𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp )