Description: A normed group is an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ngpxms | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpms | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp ) | |
| 2 | msxms | ⊢ ( 𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp ) |