Description: A normed group is an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ngpxms | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpms | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp ) | |
2 | msxms | ⊢ ( 𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp ) | |
3 | 1 2 | syl | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp ) |