Metamath Proof Explorer


Theorem ngtmnft

Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006)

Ref Expression
Assertion ngtmnft ( 𝐴 ∈ ℝ* → ( 𝐴 = -∞ ↔ ¬ -∞ < 𝐴 ) )

Proof

Step Hyp Ref Expression
1 mnfxr -∞ ∈ ℝ*
2 xrltnr ( -∞ ∈ ℝ* → ¬ -∞ < -∞ )
3 1 2 ax-mp ¬ -∞ < -∞
4 breq2 ( 𝐴 = -∞ → ( -∞ < 𝐴 ↔ -∞ < -∞ ) )
5 3 4 mtbiri ( 𝐴 = -∞ → ¬ -∞ < 𝐴 )
6 mnfle ( 𝐴 ∈ ℝ* → -∞ ≤ 𝐴 )
7 xrleloe ( ( -∞ ∈ ℝ*𝐴 ∈ ℝ* ) → ( -∞ ≤ 𝐴 ↔ ( -∞ < 𝐴 ∨ -∞ = 𝐴 ) ) )
8 1 7 mpan ( 𝐴 ∈ ℝ* → ( -∞ ≤ 𝐴 ↔ ( -∞ < 𝐴 ∨ -∞ = 𝐴 ) ) )
9 6 8 mpbid ( 𝐴 ∈ ℝ* → ( -∞ < 𝐴 ∨ -∞ = 𝐴 ) )
10 9 ord ( 𝐴 ∈ ℝ* → ( ¬ -∞ < 𝐴 → -∞ = 𝐴 ) )
11 eqcom ( -∞ = 𝐴𝐴 = -∞ )
12 10 11 syl6ib ( 𝐴 ∈ ℝ* → ( ¬ -∞ < 𝐴𝐴 = -∞ ) )
13 5 12 impbid2 ( 𝐴 ∈ ℝ* → ( 𝐴 = -∞ ↔ ¬ -∞ < 𝐴 ) )