| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 2 |  | xrltnr | ⊢ ( -∞  ∈  ℝ*  →  ¬  -∞  <  -∞ ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ¬  -∞  <  -∞ | 
						
							| 4 |  | breq2 | ⊢ ( 𝐴  =  -∞  →  ( -∞  <  𝐴  ↔  -∞  <  -∞ ) ) | 
						
							| 5 | 3 4 | mtbiri | ⊢ ( 𝐴  =  -∞  →  ¬  -∞  <  𝐴 ) | 
						
							| 6 |  | mnfle | ⊢ ( 𝐴  ∈  ℝ*  →  -∞  ≤  𝐴 ) | 
						
							| 7 |  | xrleloe | ⊢ ( ( -∞  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( -∞  ≤  𝐴  ↔  ( -∞  <  𝐴  ∨  -∞  =  𝐴 ) ) ) | 
						
							| 8 | 1 7 | mpan | ⊢ ( 𝐴  ∈  ℝ*  →  ( -∞  ≤  𝐴  ↔  ( -∞  <  𝐴  ∨  -∞  =  𝐴 ) ) ) | 
						
							| 9 | 6 8 | mpbid | ⊢ ( 𝐴  ∈  ℝ*  →  ( -∞  <  𝐴  ∨  -∞  =  𝐴 ) ) | 
						
							| 10 | 9 | ord | ⊢ ( 𝐴  ∈  ℝ*  →  ( ¬  -∞  <  𝐴  →  -∞  =  𝐴 ) ) | 
						
							| 11 |  | eqcom | ⊢ ( -∞  =  𝐴  ↔  𝐴  =  -∞ ) | 
						
							| 12 | 10 11 | imbitrdi | ⊢ ( 𝐴  ∈  ℝ*  →  ( ¬  -∞  <  𝐴  →  𝐴  =  -∞ ) ) | 
						
							| 13 | 5 12 | impbid2 | ⊢ ( 𝐴  ∈  ℝ*  →  ( 𝐴  =  -∞  ↔  ¬  -∞  <  𝐴 ) ) |